Topic:Image Shadow Removal
What is Image Shadow Removal? Image shadow removal is the process of removing shadows from images to improve their quality.
Papers and Code
Jan 13, 2025
Abstract:The rapid advancements in generative models, particularly diffusion-based techniques, have revolutionized image inpainting tasks by enabling the generation of high-fidelity and diverse content. However, object removal remains under-explored as a specific subset of inpainting, facing challenges such as inadequate semantic understanding and the unintended generation of artifacts. Existing datasets for object removal often rely on synthetic data, which fails to align with real-world scenarios, limiting model performance. Although some real-world datasets address these issues partially, they suffer from scalability, annotation inefficiencies, and limited realism in physical phenomena such as lighting and shadows. To address these limitations, this paper introduces a novel approach to object removal by constructing a high-resolution real-world dataset through long-duration video capture with fixed camera settings. Leveraging advanced tools such as Grounding-DINO, Segment-Anything-Model, and MASA for automated annotation, we provides image, background, and mask pairs while significantly reducing annotation time and labor. With our efficient annotation pipeline, we release the first fully open, high-resolution real-world dataset for object removal, and improved performance in object removal tasks through fine-tuning of pre-trained diffusion models.
* technical report
Via
Jan 03, 2025
Abstract:Image shadow removal is a crucial task in computer vision. In real-world scenes, shadows alter image color and brightness, posing challenges for perception and texture recognition. Traditional and deep learning methods often overlook the distinct needs for handling hard and soft shadows, thereby lacking detailed processing to specifically address each type of shadow in images.We propose a dual-path model that processes these shadows separately using specially designed loss functions to accomplish the hard and soft shadow removal. The model classifies shadow types and processes them through appropriate paths to produce shadow-free outputs, integrating a Vision Transformer with UNet++ for enhanced edge detail and feature fusion. Our model outperforms state-of-the-art methods and achieves 2.905 RMSE value on the ISTD dataset, which demonstrates greater effectiveness than typical single-path approaches.
* 11 pages, 5 figures, IEEE International Conference on Machine
Learning and Cybernetics (ICMLC) 2024
Via
Dec 27, 2024
Abstract:Large-scale video generation models have the inherent ability to realistically model natural scenes. In this paper, we demonstrate that through a careful design of a generative video propagation framework, various video tasks can be addressed in a unified way by leveraging the generative power of such models. Specifically, our framework, GenProp, encodes the original video with a selective content encoder and propagates the changes made to the first frame using an image-to-video generation model. We propose a data generation scheme to cover multiple video tasks based on instance-level video segmentation datasets. Our model is trained by incorporating a mask prediction decoder head and optimizing a region-aware loss to aid the encoder to preserve the original content while the generation model propagates the modified region. This novel design opens up new possibilities: In editing scenarios, GenProp allows substantial changes to an object's shape; for insertion, the inserted objects can exhibit independent motion; for removal, GenProp effectively removes effects like shadows and reflections from the whole video; for tracking, GenProp is capable of tracking objects and their associated effects together. Experiment results demonstrate the leading performance of our model in various video tasks, and we further provide in-depth analyses of the proposed framework.
* 11 pages, 18 figures
Via
Dec 03, 2024
Abstract:Large-scale generative models have achieved remarkable advancements in various visual tasks, yet their application to shadow removal in images remains challenging. These models often generate diverse, realistic details without adequate focus on fidelity, failing to meet the crucial requirements of shadow removal, which necessitates precise preservation of image content. In contrast to prior approaches that aimed to regenerate shadow-free images from scratch, this paper utilizes diffusion models to generate and refine image residuals. This strategy fully uses the inherent detailed information within shadowed images, resulting in a more efficient and faithful reconstruction of shadow-free content. Additionally, to revent the accumulation of errors during the generation process, a crosstimestep self-enhancement training strategy is proposed. This strategy leverages the network itself to augment the training data, not only increasing the volume of data but also enabling the network to dynamically correct its generation trajectory, ensuring a more accurate and robust output. In addition, to address the loss of original details in the process of image encoding and decoding of large generative models, a content-preserved encoder-decoder structure is designed with a control mechanism and multi-scale skip connections to achieve high-fidelity shadow-free image reconstruction. Experimental results demonstrate that the proposed method can reproduce high-quality results based on a large latent diffusion prior and faithfully preserve the original contents in shadow regions.
* 13pages, 10 figures
Via
Dec 03, 2024
Abstract:Shadows are often under-considered or even ignored in image editing applications, limiting the realism of the edited results. In this paper, we introduce MetaShadow, a three-in-one versatile framework that enables detection, removal, and controllable synthesis of shadows in natural images in an object-centered fashion. MetaShadow combines the strengths of two cooperative components: Shadow Analyzer, for object-centered shadow detection and removal, and Shadow Synthesizer, for reference-based controllable shadow synthesis. Notably, we optimize the learning of the intermediate features from Shadow Analyzer to guide Shadow Synthesizer to generate more realistic shadows that blend seamlessly with the scene. Extensive evaluations on multiple shadow benchmark datasets show significant improvements of MetaShadow over the existing state-of-the-art methods on object-centered shadow detection, removal, and synthesis. MetaShadow excels in image-editing tasks such as object removal, relocation, and insertion, pushing the boundaries of object-centered image editing.
Via
Nov 21, 2024
Abstract:Shadow, as a natural consequence of light interacting with objects, plays a crucial role in shaping the aesthetics of an image, which however also impairs the content visibility and overall visual quality. Recent shadow removal approaches employ the mechanism of attention, due to its effectiveness, as a key component. However, they often suffer from two issues including large model size and high computational complexity for practical use. To address these shortcomings, this work devises a lightweight yet accurate shadow removal framework. First, we analyze the characteristics of the shadow removal task to seek the key information required for reconstructing shadow regions and designing a novel regional attention mechanism to effectively capture such information. Then, we customize a Regional Attention Shadow Removal Model (RASM, in short), which leverages non-shadow areas to assist in restoring shadow ones. Unlike existing attention-based models, our regional attention strategy allows each shadow region to interact more rationally with its surrounding non-shadow areas, for seeking the regional contextual correlation between shadow and non-shadow areas. Extensive experiments are conducted to demonstrate that our proposed method delivers superior performance over other state-of-the-art models in terms of accuracy and efficiency, making it appealing for practical applications.
Via
Nov 05, 2024
Abstract:Image shadow removal is a typical low-level vision problem, where the presence of shadows leads to abrupt changes in brightness in certain regions, affecting the accuracy of upstream tasks. Current shadow removal methods still face challenges such as residual boundary artifacts, and capturing feature information at shadow boundaries is crucial for removing shadows and eliminating residual boundary artifacts. Recently, Mamba has achieved remarkable success in computer vision by globally modeling long-sequence information with linear complexity. However, when applied to image shadow removal, the original Mamba scanning method overlooks the semantic continuity of shadow boundaries as well as the continuity of semantics within the same region. Based on the unique characteristics of shadow images, this paper proposes a novel selective scanning method called boundary-region selective scanning. This method scans boundary regions, shadow regions, and non-shadow regions independently, bringing pixels of the same region type closer together in the long sequence, especially focusing on the local information at the boundaries, which is crucial for shadow removal. This method combines with global scanning and channel scanning to jointly accomplish the shadow removal. We name our model ShadowMamba, the first Mamba-based model for shadow removal. Extensive experimental results show that our method outperforms current state-of-the-art models across most metrics on multiple datasets. The code for ShadowMamba is available at (Code will be released upon acceptance).
Via
Nov 26, 2024
Abstract:Recent advancements in large generative models, particularly diffusion-based methods, have significantly enhanced the capabilities of image editing. However, achieving precise control over image composition tasks remains a challenge. Layered representations, which allow for independent editing of image components, are essential for user-driven content creation, yet existing approaches often struggle to decompose image into plausible layers with accurately retained transparent visual effects such as shadows and reflections. We propose $\textbf{LayerDecomp}$, a generative framework for image layer decomposition which outputs photorealistic clean backgrounds and high-quality transparent foregrounds with faithfully preserved visual effects. To enable effective training, we first introduce a dataset preparation pipeline that automatically scales up simulated multi-layer data with synthesized visual effects. To further enhance real-world applicability, we supplement this simulated dataset with camera-captured images containing natural visual effects. Additionally, we propose a consistency loss which enforces the model to learn accurate representations for the transparent foreground layer when ground-truth annotations are not available. Our method achieves superior quality in layer decomposition, outperforming existing approaches in object removal and spatial editing tasks across several benchmarks and multiple user studies, unlocking various creative possibilities for layer-wise image editing. The project page is https://rayjryang.github.io/LayerDecomp.
Via
Oct 29, 2024
Abstract:To prevent unauthorized use of text in images, Scene Text Removal (STR) has become a crucial task. It focuses on automatically removing text and replacing it with a natural, text-less background while preserving significant details such as texture, color, and contrast. Despite its importance in privacy protection, STR faces several challenges, including boundary artifacts, inconsistent texture and color, and preserving correct shadows. Most STR approaches estimate a text region mask to train a model, solving for image translation or inpainting to generate a text-free image. Thus, the quality of the generated image depends on the accuracy of the inpainting mask and the generator's capability. In this work, we leverage the superior capabilities of diffusion models in generating high-quality, consistent images to address the STR problem. We introduce a ControlNet diffusion model, treating STR as an inpainting task. To enhance the model's robustness, we develop a mask pretraining pipeline to condition our diffusion model. This involves training a masked autoencoder (MAE) using a combination of box masks and coarse stroke masks, and fine-tuning it using masks derived from our novel segmentation-based mask refinement framework. This framework iteratively refines an initial mask and segments it using the SLIC and Hierarchical Feature Selection (HFS) algorithms to produce an accurate final text mask. This improves mask prediction and utilizes rich textural information in natural scene images to provide accurate inpainting masks. Experiments on the SCUT-EnsText and SCUT-Syn datasets demonstrate that our method significantly outperforms existing state-of-the-art techniques.
* 11 Pages, 6 Figures, 3 Tables
Via
Oct 07, 2024
Abstract:We introduce a high-fidelity portrait shadow removal model that can effectively enhance the image of a portrait by predicting its appearance under disturbing shadows and highlights. Portrait shadow removal is a highly ill-posed problem where multiple plausible solutions can be found based on a single image. While existing works have solved this problem by predicting the appearance residuals that can propagate local shadow distribution, such methods are often incomplete and lead to unnatural predictions, especially for portraits with hard shadows. We overcome the limitations of existing local propagation methods by formulating the removal problem as a generation task where a diffusion model learns to globally rebuild the human appearance from scratch as a condition of an input portrait image. For robust and natural shadow removal, we propose to train the diffusion model with a compositional repurposing framework: a pre-trained text-guided image generation model is first fine-tuned to harmonize the lighting and color of the foreground with a background scene by using a background harmonization dataset; and then the model is further fine-tuned to generate a shadow-free portrait image via a shadow-paired dataset. To overcome the limitation of losing fine details in the latent diffusion model, we propose a guided-upsampling network to restore the original high-frequency details (wrinkles and dots) from the input image. To enable our compositional training framework, we construct a high-fidelity and large-scale dataset using a lightstage capturing system and synthetic graphics simulation. Our generative framework effectively removes shadows caused by both self and external occlusions while maintaining original lighting distribution and high-frequency details. Our method also demonstrates robustness to diverse subjects captured in real environments.
* 17 pages, siggraph asia, TOG
Via